
Introduction to kinetic models for 
biomass pyrolysis.  Part 2.

Numerical techniques.

Gábor Várhegyi
Institute of Materials & Environmental Chemistry

Chemical Research Center
Hungarian Academy of Sciences



2

Subtopics:

Can we evaluate the DTG curves instead of the TG curves
without introducing mathematical errors/artifacts? (How to get
reliable DTG?)

What numerical methods are well worth to use in the solution of 
the kinetic equations and in the minimization of the least squares 
sum?
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Determination of the DTG curve (1)
If the errors are random, we can estimate the noise level of a given 

curve by simple statistical checks, then we can find a “smooth” f(t) 
function approximating the experimental data within the given noise 
level: 

average smoothness of f(t) ≈ maximum (1) 
 N

 

Σ wi
2 (f(ti)–Xi)2 ≤ N σ2 (2) 

i=1 

Here N, f(t), t, Xi and σ denote the number of data, the smoothing 
function, the time, the observations, and the noise level, respectively.  
The use of weight factors wi is optional.  (We can use wi≡1 values).  
This type of smoothing was invented by Whittaker & Robinson more 
then 70 years ago! (Their book, The Calculus of Observations is a treasure 
for science history.)  Later Reinsch developed an effective algorithm for 
the calculation of cubic spline functions satisfying conditions (1) – (2).  
This method is now part of every major mathematical program library. 
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Determination of the DTG curve (2)

The noise level can be estimated by simple statistical checks. 
The smoothing of the random noise, however, is not 

enough due to wave-like errors!  We must increase σ gradually 
till we got an acceptable compromise. 

For example, let us suppose that the random noise is 0.3µg and 
we get the acceptable compromise at 0.5 µg.  Then the systematic 
error is not higher than 0.2 µg.  It is surely negligible at a sample 
mass of 2 mg and acceptable at a sample mass of 0.2 mg. 

If the TG system is in a good shape and carefully cleaned from 
tar deposits, etc., even better values can be achieved, as the 
following examples show. 
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Determination of the DTG curve: Smoothing a the statistic noise
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     Corn cob charcoal 03.12.31, middle section, Ø 10.6 µm (10 min grinding)
     m0= 0.613 mg, O2: 140 ml/min, 5 °C/min
     Spline DTG: actual deviation of G =   .056 microgram
     DTGmax:   1.694E-01%/s  (  1.035E-03 mg/s) at  415.0°C
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Determination of the DTG curve: Smoothing more than the statistic noise
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     Corn cob charcoal 03.12.31, middle section, Ø 10.6 µm (10 min grinding)
     m0= 0.613 mg, O2: 140 ml/min, 5 °C/min
     Spline DTG: actual deviation of G =   .086 microgram
     DTGmax:   1.623E-01%/s  (  1.034E-03 mg/s) at  414.8°C
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DAEM kinetics,
2 pseudokomponents, 
simultaneous evaluation 
of 5 experiments.
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Relative deviation:  3.36%;   rms rel. dev. of all experiments:  3.83%
  1: E= 268.5  log10 A= 22.11     sigma(E)=29.1    δI=9.3%
  2: E= 245.9  log10 A= 14.29     sigma(E)=13.0
C:           3004        8668
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BAT tobacco T237 G0=4.1mg, Ar, 10°C/min
Relative deviation:  8.12%;   rms rel. dev. of all experiments:  6.45%
  1: E= 222.6  log10 A= 18.03     sigma(E)=16.3    δI=-1.9%
  2: E= 259.4  log10 A= 16.02     sigma(E)=14.8
C:           2362        2387

DAEM kinetics,
2 pseudokomponents, 
simultaneous evaluation 
of 5 experiments.

Example from 
TGA-MS 

experiments
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Methods for a general least squares process:

I. Basic considerations:

The time of the programmers is much more expensive than the time of
the computer.

An ordinary desktop PC in the order of € 400 can do the job. Since
invention of the ~3 GHz processors, simple runs take only seconds.
Nowadays the longest runs take less than a night (unattended) or a day
(as a low priority background job). 15 years ago the evaluation of a
huge data set by a complex model required 1 month. During a longer
run, the program saves the results in every 15 minutes automatically.
(No problem with blackouts, if any. Besides, we can survey after an
unattended run what happened, how the optimum was found).

The complexity of the programs should be kept within limits, otherwise
we cannot modify them for different tasks / mechanisms / evaluation
strategies.

Accordingly, simple, but safe techniques should be selected.
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Methods for a general least squares process II.  ODE solution
Part 1: Independent 1st order reactions:

The solution of the 1st order kinetic equation can be carried out via a 
simple, fast integration at any T(t).  

Let us separate the variables and integrate both sides: 

dα/dt = k(T) (1-α) 

dα/(1-α) = k(T) dt 

∫ (1-α)-1 dα = ∫ k(T) dt 

The left hand side is the logarithm function, the right-hand side can be 
easily integrated numerically by well-known methods to any precision ...  

This is applicable if a biomass is described by assuming independent, 
parallel reactions.  Cannot be employed, however, for successive and/or 
competitive reactions; in such cases a general ODE solving algorithm is 
more straightforward. 
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Methods for a general least squares process II.  ODE solution

Part 2. Solution of a general system of ordinary differential equations:
One of the simplest methods is the Runge Kutta family of ODE solvers.
If the step size is continuously adjusted, it can safely keep any reasonable
precision. (Except in the case of a stiff system of ODEs!). I usually set a
precision of 10-8, and refine the results with another run of the evaluation
software with a precision of 10-10. Why to use such tight precision
requirements?
(Just to be absolutely sure that the found optimum is not affected by
mathematical artifacts. It’s free!)

One could hope larger step sizes by a more advanced technique.
But can a step size by higher than the step size of the observations?

No! We measure discrete temperature values. In my programs, the T(t)
functions are constructed by simple interpolation. One could use spline
approximations, too. In both cases, however, either T(t) or its derivatives are
not smooth in the points of the observations. Accordingly, we can solve the
ODEs separately, in each intervals:
[t1, t2], [t2, t3], [t3, t4], ...
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Methods for a general least squares process:

III. Optimization:
Which is a simple, but safe method?
Should we bother with finding analytical or numerical derivatives?

In the fifties, discrete steps were made in each direction, successively: 
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Methods for a general least squares process III.  Optimization

Later, in 1961, Hook and Jeeves added a step in the direction of the valley found 
in each cycle (see the red arrows in the figure.) 

This invention improved the speed.  This 
simple algorithm is very stable and finds a 
minimum at any topography.  [See the 
recent results of Torczon et al.] 
Contrary to the Simplex method of Nelder 
and Mead: the simplex sometime flatten, 
and one dimension is loss. 
One can easily supplement this method 
by refining the step-length by parabolic 
interpolation/extrapolation in each step.  
(Its result is used only when it is 
significantly better than the unrefined 
step.) 
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Methods for a general least squares process III.  Optimization

Further advantages of the Hook – Jeeves method: 

(1) Works simple and safely in the case of 
interval bonds on the variables, e.g.: 
0 ≤ n ≥ 3;   30 ≤ E ≤ 300  

(2) In our case, several parameters affect 
only one ODE in the system.  For example, 
if we evaluate a series of experiments with 
common E, while each experiment has its 
own ln A and m∞ then each ln A and m∞ 
affect only one ODE.  In the steps in the 
direction of these parameters only one 
ODE should be solved. 
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Methods for a general least squares process V.  Separation of the 
linear and non-linear parameters 
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SN is quadratic for parameters cj.  They can be obtained by solving a 
system of linear equation by any set of Ej and Aj.  Accordingly, only Ej 
and Aj should be searched by a general minimization algorithm. 

Safety considerations:  Whatever combinations arise temporarily 
during the minimization of SN, the algorithm must not go astray.  
Accordingly, the program should automatically employ some strategy 
(e.g. a Tikhanov's regularization) for finding meaningful parameters if it 
observes ill-definition.  Besides, the program must not allow negative 
cj (except if the user explicitly tells such exception at the very 
beginning of the run). 
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Methods for a general least squares process VI.  Parameter 
transformations

The parameters can compensate each other so some extent. For example
a change of E can be counterbalanced more or less by a proper change of
A. Many authors believed deeper physical content behind this simple
mathematical consequence that can be deduced easily from the properties
of the Arrhenius type equations at non-isothermal T(t) programs.

The compensation effects can slow down the evaluation. One can fight
against them by simple parameter transformations that decrease the
dependence between the unknown parameters.

Nowadays I am not sure that such transformations are important, except a
simple and trivial one:

ln A or log10 A should be used instead of A

to avoid unpleasant geometries. Try to visualize an Arrhenius equation in
the following way:

k(T) = exp( ln A – E/RT )
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End of these lectures.
Thanks for your attention.  
See you tomorrow! 
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